Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, CCen_US
dc.contributor.authorChen, APen_US
dc.date.accessioned2014-12-08T15:39:18Z-
dc.date.available2014-12-08T15:39:18Z-
dc.date.issued2004-05-01en_US
dc.identifier.issn0305-0548en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0305-0548(03)00040-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/26848-
dc.description.abstractThis paper proposes a method for performing fuzzy multiple discriminant analysis on groups of crisp data and determining the membership function of each group by minimizing the classification error using a genetic algorithm. Euclidean distance is used to measure the similarity between data points and defining membership functions. A numerical example is provided for illustration. The numerical example indicates that the classification obtained by fuzzy discriminant analysis is more satisfactory than that obtained by crisp discriminant analysis and is less fuzzy than that obtained by fuzzy cluster analysis. Moreover, the proposed fuzzy discriminant analysis is also a good approach to identifying outliers, of which the degree of membership to each group is zero. (C) 2003 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy setsen_US
dc.subjectfuzzy discriminant analysisen_US
dc.subjectgenetic algorithmsen_US
dc.titleFuzzy discriminant analysis with outlier detection by genetic algorithmen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0305-0548(03)00040-6en_US
dc.identifier.journalCOMPUTERS & OPERATIONS RESEARCHen_US
dc.citation.volume31en_US
dc.citation.issue6en_US
dc.citation.spage877en_US
dc.citation.epage888en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000188396200003-
dc.citation.woscount7-
Appears in Collections:Articles


Files in This Item:

  1. 000188396200003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.