完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, CCen_US
dc.contributor.authorChen, APen_US
dc.date.accessioned2014-12-08T15:39:18Z-
dc.date.available2014-12-08T15:39:18Z-
dc.date.issued2004-05-01en_US
dc.identifier.issn0305-0548en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0305-0548(03)00040-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/26848-
dc.description.abstractThis paper proposes a method for performing fuzzy multiple discriminant analysis on groups of crisp data and determining the membership function of each group by minimizing the classification error using a genetic algorithm. Euclidean distance is used to measure the similarity between data points and defining membership functions. A numerical example is provided for illustration. The numerical example indicates that the classification obtained by fuzzy discriminant analysis is more satisfactory than that obtained by crisp discriminant analysis and is less fuzzy than that obtained by fuzzy cluster analysis. Moreover, the proposed fuzzy discriminant analysis is also a good approach to identifying outliers, of which the degree of membership to each group is zero. (C) 2003 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy setsen_US
dc.subjectfuzzy discriminant analysisen_US
dc.subjectgenetic algorithmsen_US
dc.titleFuzzy discriminant analysis with outlier detection by genetic algorithmen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0305-0548(03)00040-6en_US
dc.identifier.journalCOMPUTERS & OPERATIONS RESEARCHen_US
dc.citation.volume31en_US
dc.citation.issue6en_US
dc.citation.spage877en_US
dc.citation.epage888en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000188396200003-
dc.citation.woscount7-
顯示於類別:期刊論文


文件中的檔案:

  1. 000188396200003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。