完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChuang, Chun-Hsiangen_US
dc.contributor.authorLai, Pei-Chenen_US
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorKuo, Bor-Chenen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:39:21Z-
dc.date.available2014-12-08T15:39:21Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-6917-8en_US
dc.identifier.issn1098-7576en_US
dc.identifier.urihttp://hdl.handle.net/11536/26876-
dc.description.abstractGrowing numbers of traffic accidents had become a serious social safety problem in recent years. The main factor of the high fatalities was the obvious decline of the driver's cognitive state in their perception, recognition and vehicle control abilities while being sleepy. The key to avoid the terrible consequents is to build a detecting system for ongoing assessment of driver's cognitive state. A quickly growing research, brain-computer interface (BCI), offers a solution offering great assistance to those who require alternative communicatory and control mechanisms. In this study, we propose an alertness/drowsiness classification system based on investigating electroencephalographic (EEG) brain dynamics in lane-keeping driving experiments in a virtual reality (VR) driving environment with a motion platform. The core of the classification system is composed of dimension reduction technique and classifier learning algorithm. In order to find the suitable method for better describing the data structure, we explore the performances using different feature extraction and feature selection methods with different classifiers. Experiment results show that the accuracy is over 80% in most combinations and even near 90% under Principal Component Analysis (PCA) and Nonparametric Weighted Feature Extraction (NWFE) going with Gaussian Maximum Likelihood classifier (ML) and k-Nearest-Neighbor classifier (kNN), respectively. In addition, this developed classification system can also solve the individual brain dynamic differences caused from different subjects and overcome the subject dependent limitation. The optimized solution with better accuracy performance out of all combinations can be considered to implement in the kernel brain-computer interface.en_US
dc.language.isoen_USen_US
dc.titleDriver's Cognitive State Classification toward Brain Computer Interface via using a Generalized and Supervised Technologyen_US
dc.typeArticleen_US
dc.identifier.journal2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.identifier.wosnumberWOS:000287421403044-
顯示於類別:會議論文