完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCHANG, YCen_US
dc.contributor.authorHSU, LHen_US
dc.date.accessioned2014-12-08T15:04:12Z-
dc.date.available2014-12-08T15:04:12Z-
dc.date.issued1994en_US
dc.identifier.isbn0-444-81989-4en_US
dc.identifier.issn0926-5473en_US
dc.identifier.urihttp://hdl.handle.net/11536/2704-
dc.description.abstractLet G = (V, E) be a graph. We associate with each edge ei E E an ordered pair of rational numbers (ni, bi). Let the weight of a spanning tree T, w(T), be defined as (Sigma(ei is an element of T) a(i))(2) + (Sigma(ei is an element of T) b(i))(2). A spanning tree T in G is called an optimum spanning tree if w(T) greater than or equal to w(T') for all spanning trees T' in G. The problem of finding the optimum spanning tree of the two-parameter objective is called MST2P. Hassin and Tamir have proposed an O(q(6)) algorithm for solving: MST2P, where q = E. Let f(G) denote the weight of the optimum spanning tree of G. The element perturbation problem of MST2P is to compute f(G - e(k)) for all e(k) is an element of E. In this paper, we present an O(q(6)) algorithm to solve the element perturbation problem of MST2P. Our algorithm can also be applied to the EPP of minimal cost/reliability ratio spanning tree problem in communication network design.en_US
dc.language.isoen_USen_US
dc.subjectNONNUMERICAL ALGORITHMS AND PROBLEMSen_US
dc.subjectCOMBINATORICSen_US
dc.subjectGRAPH THEORYen_US
dc.titleELEMENT PERTURBATION PROBLEMS OF OPTIMUM SPANNING-TREES WITH 2-PARAMETER OBJECTIVESen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalINFORMATION PROCESSING '94, VOL I: TECHNOLOGY AND FOUNDATIONSen_US
dc.citation.volume51en_US
dc.citation.spage241en_US
dc.citation.epage246en_US
dc.contributor.department資訊科學與工程研究所zh_TW
dc.contributor.departmentInstitute of Computer Science and Engineeringen_US
dc.identifier.wosnumberWOS:A1994BB29Q00037-
顯示於類別:會議論文