完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lin, T | en_US |
dc.contributor.author | Wu, JC | en_US |
dc.contributor.author | Chang, JS | en_US |
dc.date.accessioned | 2014-12-08T15:39:48Z | - |
dc.date.available | 2014-12-08T15:39:48Z | - |
dc.date.issued | 2004 | en_US |
dc.identifier.isbn | 3-540-23300-8 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/27197 | - |
dc.description.abstract | Named-entities in free text represent a challenge to text analysis in Machine Translation and Cross Language Information Retrieval. These phrases are often transliterated into another language with a different sound inventory and writing system. Named-entities found in free text are often not listed in bilingual dictionaries. Although it is possible to identify and translate named-entities on the fly without a list of proper names and transliterations, an extensive list of existing transliterations certainly will ensure high precision rate. We use a seed list of proper names and transliterations to train a Machine Transliteration Model. With the model it is possible to extract proper names and their transliterations in monolingual or parallel corpora with high precision and recall rates. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Extraction of name and transliteration in monolingual and parallel corpora | en_US |
dc.type | Article; Proceedings Paper | en_US |
dc.identifier.journal | MACHINE TRANSLATION: FROM REAL USERS TO RESEARCH, PROCEEDINGS | en_US |
dc.citation.volume | 3265 | en_US |
dc.citation.spage | 177 | en_US |
dc.citation.epage | 186 | en_US |
dc.contributor.department | 電信工程研究所 | zh_TW |
dc.contributor.department | Institute of Communications Engineering | en_US |
dc.identifier.wosnumber | WOS:000224611600020 | - |
顯示於類別: | 會議論文 |