完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, DYen_US
dc.contributor.authorLee, SYen_US
dc.date.accessioned2014-12-08T15:39:56Z-
dc.date.available2014-12-08T15:39:56Z-
dc.date.issued2004en_US
dc.identifier.isbn3-540-23977-4en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/27278-
dc.description.abstractDue to the tremendous growth in the number of digital videos, the development of video retrieval algorithms that can perform efficient and effective retrieval task is indispensable. In this paper, we propose a high-level motion-pattern descriptor, temporal motion intensity of moving blobs (MIMB) moments, which exploits spatial and temporal features to characterize video sequences in a semantics-based manner. The Discrete Cosine Transform (DCT) is applied to convert the high-level features from the time domain to the frequency domain. The energy concentration property of DCT allows us to use only a few DCT coefficients to precisely capture the variations of moving blobs. Compared to the motion activity descriptors, RLD and SAH in MPEG-7, the proposed descriptor yield 41% and 20% average performance gains over RLD and SAH, respectively. Having the efficient scheme for video representation, one can perform video retrieval in an accurate and efficient way.en_US
dc.language.isoen_USen_US
dc.titleRobust video similarity retrieval using temporal MIMB momentsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2004, PT 2, PROCEEDINGSen_US
dc.citation.volume3332en_US
dc.citation.spage221en_US
dc.citation.epage228en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000226025200028-
顯示於類別:會議論文