Full metadata record
DC FieldValueLanguage
dc.contributor.authorSun, YMen_US
dc.contributor.authorHuang, HDen_US
dc.contributor.authorHorng, JTen_US
dc.contributor.authorTsou, APen_US
dc.contributor.authorHuang, SLen_US
dc.date.accessioned2014-12-08T15:39:56Z-
dc.date.available2014-12-08T15:39:56Z-
dc.date.issued2004en_US
dc.identifier.isbn3-540-22936-1en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/27290-
dc.description.abstractRecently, biological databases and. analytical methods have become available for analyzing gene expression and transcriptional regulatory sequences. However, users must make the complicated analyses to query the data in various databases, and then they must analyze the gene upstreams using various predictive tools, before finally converting date among formats. Beyond methods for predicting transcriptional regulatory sites, new automated and integrated methods for analyzing gene upstream sequences on a higher level are urgently required. Efficient and integrated data management methods are essential, too. We present an integrated system, namely RgS-Miner, to predict transcriptional regulatory sites and detect co-occurrence of these regulatory sites. RgS-Miner comprises a biological data,, warehousing system, pattern discovery programs, pattern occurrence association detectors and user interfaces. The system is available at http://rgsminer.csie.ncu.edu.tw/.en_US
dc.language.isoen_USen_US
dc.titleRgS-Miner: A biological data warehousing, analyzing and mining system for identifying transcriptional regulatory sites in human genomeen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalDATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGSen_US
dc.citation.volume3180en_US
dc.citation.spage751en_US
dc.citation.epage760en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000223762500072-
Appears in Collections:Conferences Paper