Full metadata record
DC FieldValueLanguage
dc.contributor.authorJUANG, Jen_US
dc.contributor.authorLEE, MTen_US
dc.date.accessioned2014-12-08T15:04:14Z-
dc.date.available2014-12-08T15:04:14Z-
dc.date.issued1994-01-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/0024-3795(94)90323-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/2731-
dc.description.abstractWe derive comparison theorems for the matrix-valued Riccati equations of the form R(i)'(z) = B(i)(z) + A(i)(z)R(i)(z) + R(i)(z)D(i)(z) + R(i)(z)C(i)(z)R(i)(z), R(i)(0) = R0,i, i = 1, 2. Such equations arise in transport problems and other applications. Sufficient conditions under which R1(z) - R2(z) greater-than-or-equal-to 0 and R1(z) - R2(z) > 0 (in the componentwise sense) for all z are given, respectively. The comparison theorems in which the positivity is defined in terms of positive semidefiniteness were obtained by Royden. Because of the intrinsic disparity in the nature of positivity structure, the techniques developed there cannot be applied to our problem.en_US
dc.language.isoen_USen_US
dc.titleCOMPARISON-THEOREMS FOR THE MATRIX RICCATI EQUATIONen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/0024-3795(94)90323-9en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume196en_US
dc.citation.issueen_US
dc.citation.spage183en_US
dc.citation.epage191en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1994NN97600012-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. A1994NN97600012.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.