標題: COMPARISON-THEOREMS FOR THE MATRIX RICCATI EQUATION
作者: JUANG, J
LEE, MT
交大名義發表
應用數學系
National Chiao Tung University
Department of Applied Mathematics
公開日期: 1-一月-1994
摘要: We derive comparison theorems for the matrix-valued Riccati equations of the form R(i)'(z) = B(i)(z) + A(i)(z)R(i)(z) + R(i)(z)D(i)(z) + R(i)(z)C(i)(z)R(i)(z), R(i)(0) = R0,i, i = 1, 2. Such equations arise in transport problems and other applications. Sufficient conditions under which R1(z) - R2(z) greater-than-or-equal-to 0 and R1(z) - R2(z) > 0 (in the componentwise sense) for all z are given, respectively. The comparison theorems in which the positivity is defined in terms of positive semidefiniteness were obtained by Royden. Because of the intrinsic disparity in the nature of positivity structure, the techniques developed there cannot be applied to our problem.
URI: http://dx.doi.org/10.1016/0024-3795(94)90323-9
http://hdl.handle.net/11536/2731
ISSN: 0024-3795
DOI: 10.1016/0024-3795(94)90323-9
期刊: LINEAR ALGEBRA AND ITS APPLICATIONS
Volume: 196
Issue: 
起始頁: 183
結束頁: 191
顯示於類別:期刊論文


文件中的檔案:

  1. A1994NN97600012.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。