Full metadata record
DC FieldValueLanguage
dc.contributor.authorHwang, FKen_US
dc.contributor.authorLiu, YCen_US
dc.date.accessioned2014-12-08T15:40:01Z-
dc.date.available2014-12-08T15:40:01Z-
dc.date.issued2003-12-01en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1023/B:JOCO.0000017382.83399.0ben_US
dc.identifier.urihttp://hdl.handle.net/11536/27334-
dc.description.abstractBalding et al. ( 1995) showed that randomizing over the k-set space yields much better pooling designs than the random pooling design without the k-restriction. A natural question arises as to whether a smaller subspace, i.e., a space with more structure, will yield even better results. We take the random subset containment design recently proposed by Macula, which randomizes over a subspace of the k-set space, as our guinea pig to compare with the k-set space. Unfortunately the performance of the subset containment design is hard to analyze and only approximations are given. For a set of parameters, we are able to produce either an exact analysis or very good approximations. The comparisons under these parameters seem to favor the k-set space.en_US
dc.language.isoen_USen_US
dc.subjectrandom pooling designsen_US
dc.subjectclone library screeningen_US
dc.subjectk-cliqueen_US
dc.titleRandom pooling designs under various structuresen_US
dc.typeArticleen_US
dc.identifier.doi10.1023/B:JOCO.0000017382.83399.0ben_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume7en_US
dc.citation.issue4en_US
dc.citation.spage339en_US
dc.citation.epage352en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000189208100002-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000189208100002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.