完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Hwang, FK | en_US |
dc.contributor.author | Liu, YC | en_US |
dc.date.accessioned | 2014-12-08T15:40:01Z | - |
dc.date.available | 2014-12-08T15:40:01Z | - |
dc.date.issued | 2003-12-01 | en_US |
dc.identifier.issn | 1382-6905 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1023/B:JOCO.0000017382.83399.0b | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/27334 | - |
dc.description.abstract | Balding et al. ( 1995) showed that randomizing over the k-set space yields much better pooling designs than the random pooling design without the k-restriction. A natural question arises as to whether a smaller subspace, i.e., a space with more structure, will yield even better results. We take the random subset containment design recently proposed by Macula, which randomizes over a subspace of the k-set space, as our guinea pig to compare with the k-set space. Unfortunately the performance of the subset containment design is hard to analyze and only approximations are given. For a set of parameters, we are able to produce either an exact analysis or very good approximations. The comparisons under these parameters seem to favor the k-set space. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | random pooling designs | en_US |
dc.subject | clone library screening | en_US |
dc.subject | k-clique | en_US |
dc.title | Random pooling designs under various structures | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1023/B:JOCO.0000017382.83399.0b | en_US |
dc.identifier.journal | JOURNAL OF COMBINATORIAL OPTIMIZATION | en_US |
dc.citation.volume | 7 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 339 | en_US |
dc.citation.epage | 352 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000189208100002 | - |
dc.citation.woscount | 3 | - |
顯示於類別: | 期刊論文 |