Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIU, JLen_US
dc.contributor.authorRHEINBOLDT, WCen_US
dc.date.accessioned2014-12-08T15:04:14Z-
dc.date.available2014-12-08T15:04:14Z-
dc.date.issued1994en_US
dc.identifier.issn0163-0563en_US
dc.identifier.urihttp://hdl.handle.net/11536/2733-
dc.identifier.urihttp://dx.doi.org/10.1080/01630569408816569en_US
dc.description.abstractA general construction technique is presented for a posteriori error estimators of finite element solutions of elliptic boundary value problems that satisfy a Garding inequality. The estimators are obtained by an element-by-element solution of 'weak residual' problems with or without considering element boundary residuals. There is no order restriction on the finite element spaces used for the approximate solution or the error estimation; that is, the design of the estimators is applicable in connection with either one of the h-, p-, or hp- formulations of the finite element method. Under suitable assumptions it is shown that the estimators are bounded by constant multiples of the true error in a suitable norm. Some numerical results are given to demonstrate the effectiveness and efficiency of the approach.en_US
dc.language.isoen_USen_US
dc.titleA-POSTERIORI FINITE-ELEMENT ERROR ESTIMATORS FOR INDEFINITE ELLIPTIC BOUNDARY-VALUE-PROBLEMSen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/01630569408816569en_US
dc.identifier.journalNUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATIONen_US
dc.citation.volume15en_US
dc.citation.issue3-4en_US
dc.citation.spage335en_US
dc.citation.epage356en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1994NK98300008-
dc.citation.woscount11-
Appears in Collections:Articles