Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Chi-Yien_US
dc.contributor.authorDutoit, Xavieren_US
dc.contributor.authorSong, Kai-Taien_US
dc.contributor.authorVan Brussel, Hendriken_US
dc.contributor.authorNuttin, Marnixen_US
dc.date.accessioned2014-12-08T15:04:15Z-
dc.date.available2014-12-08T15:04:15Z-
dc.date.issued2008en_US
dc.identifier.isbn978-1-4244-1646-2en_US
dc.identifier.issn1050-4729en_US
dc.identifier.urihttp://hdl.handle.net/11536/2763-
dc.description.abstractThis paper presents a novel design of visual state estimation for an image-based tracking control system to estimate system state during visual tracking control process. The advantage of this design is that it can estimate the target status and target image velocity without using the knowledge of target's 3D motion-model information. This advantage is helpful for real-time visual tracking controller design. In order to increase the robustness against random observation noise, a neural network based self-tuning algorithm is proposed using echo state network (ESN) technique. The visual state estimator is designed by combining a Kalman filter with the ESN-based self-tuning algorithm. The performance of this estimator design has been evaluated using computer simulation. Several interesting experiments on a mobile robot validate the proposed algorithms.en_US
dc.language.isoen_USen_US
dc.titleVisual state estimation using self-tuning Kalman filter and echo state networken_US
dc.typeProceedings Paperen_US
dc.identifier.journal2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9en_US
dc.citation.spage917en_US
dc.citation.epage922en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000258095000145-
Appears in Collections:Conferences Paper