完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLai, MCen_US
dc.date.accessioned2014-12-08T15:40:37Z-
dc.date.available2014-12-08T15:40:37Z-
dc.date.issued2003-07-20en_US
dc.identifier.issn0271-2091en_US
dc.identifier.urihttp://dx.doi.org/10.1002/fld.558en_US
dc.identifier.urihttp://hdl.handle.net/11536/27706-
dc.description.abstractWe develop an efficient fourth-order finite difference method for solving the incompressible Navier-Stokes equations in the vorticity-stream function formulation on a disk. We use the fourth-order Runge-Kutta method for the time integration and treat both the convection and diffusion terms explicitly. Using a uniform grid with shifting a half mesh away from the origin, we avoid placing the grid point directly at the origin; thus, no pole approximation is needed. Besides, on such grid, a fourth-order fast direct method is used to solve the Poisson equation of the stream function. By Fourier filtering the vorticity in the azimuthal direction at each time stage, we are able to increase the time step to a reasonable size. The numerical results of the accuracy test and the simulation of a vortex dipole colliding with circular wall are presented. Copyright (C) 2003 John Wiley Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectNavier-Stokes equationsen_US
dc.subjectvorticity-stream function formulationen_US
dc.subjectpolar co-ordinatesen_US
dc.subjectfast Poisson solveren_US
dc.subjectRunge-Kutta methoden_US
dc.titleFourth-order finite difference scheme for the incompressible Navier-Stokes equations in a disken_US
dc.typeArticleen_US
dc.identifier.doi10.1002/fld.558en_US
dc.identifier.journalINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDSen_US
dc.citation.volume42en_US
dc.citation.issue8en_US
dc.citation.spage909en_US
dc.citation.epage922en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000183795100005-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000183795100005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。