Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, HLen_US
dc.contributor.authorWu, PYen_US
dc.date.accessioned2014-12-08T15:40:47Z-
dc.date.available2014-12-08T15:40:47Z-
dc.date.issued2003-06-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://hdl.handle.net/11536/27801-
dc.description.abstractIn this survey article, we give an expository account of the recent developments on the Poncelet property for numerical ranges of the compressions of the shift S(phi). It can be considered as an updated and more advanced edition of the recent expository article published in the American Mathematical Monthly by the second author on this topic. The new information includes: (1) a simplified approach to the main results (generalizations of Poncelet, Brianchon-Ceva and Lucas-Siebeck theorems) in this area, (2) the recent discovery of Mirman reftiting a previous conjecture on the coincidence of Poncelet curves and boundaries of the numerical ranges of finite-dimensional S(phi), and (3) some partial generalizations by the present authors of the above-mentioned results from the unitary-dilation context to the normal-dilation one and also from the finite-dimensional S(phi) to the infinite-dimensional.en_US
dc.language.isoen_USen_US
dc.subjectnumerical rangeen_US
dc.subjectPoncelet propertyen_US
dc.subjectunitary dilationen_US
dc.titleNumerical range and Poncelet propertyen_US
dc.typeReviewen_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume7en_US
dc.citation.issue2en_US
dc.citation.spage173en_US
dc.citation.epage193en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000183943700001-
dc.citation.woscount18-
Appears in Collections:Articles