完整後設資料紀錄
DC 欄位語言
dc.contributor.authorNieh, KYen_US
dc.contributor.authorHuang, CSen_US
dc.contributor.authorTseng, YPen_US
dc.date.accessioned2014-12-08T15:40:53Z-
dc.date.available2014-12-08T15:40:53Z-
dc.date.issued2003-05-01en_US
dc.identifier.issn0045-7949en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0045-7949(03)00057-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/27877-
dc.description.abstractIn-plane free vibration and stability analyses of elliptic arches subjected to a uniformly distributed vertical static loading are performed here. A variational principle is applied to derive the governing equations for free vibration and stability of preloaded arches, considering the effect of the extensibility of the arch centerline but neglecting the effect of shear deformation. Particular attention is given to present a general procedure for combining series solutions with stiffness matrixes to construct an analytical solution for free vibration and stability of loaded arches with varying curvature. The correctness of the proposed solution is verified through a convergence study on the vibration frequencies of a loaded circular arch and by comparing the results with published data. The solution is further applied to investigate the behaviors of clamped or fixed-free elliptic arches. (C) 2003 Elsevier Science Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectanalytical solutionen_US
dc.subjectin-planeen_US
dc.subjectvibrationen_US
dc.subjectstabilityen_US
dc.subjectarchen_US
dc.subjectvarying curvatureen_US
dc.titleAn analytical solution for in-plane free vibration and stability of loaded elliptic archesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0045-7949(03)00057-9en_US
dc.identifier.journalCOMPUTERS & STRUCTURESen_US
dc.citation.volume81en_US
dc.citation.issue13en_US
dc.citation.spage1311en_US
dc.citation.epage1327en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000182579200001-
dc.citation.woscount8-
顯示於類別:期刊論文


文件中的檔案:

  1. 000182579200001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。