完整後設資料紀錄
DC 欄位語言
dc.contributor.authorJOSHI, Aen_US
dc.contributor.authorLEE, CHen_US
dc.date.accessioned2014-12-08T15:04:17Z-
dc.date.available2014-12-08T15:04:17Z-
dc.date.issued1993-11-01en_US
dc.identifier.issn0340-1200en_US
dc.identifier.urihttp://dx.doi.org/10.1007/BF00202567en_US
dc.identifier.urihttp://hdl.handle.net/11536/2791-
dc.description.abstractThis paper describes a neural network model of the retinal responses to stimuli whose architecture is inspired by neurophysiological data. Suitable assumptions are identified which enable the development of a simple model for an individual X-type ganglion cell using backpropagation. This is then used to make a model of retinal processing. We present here our model of the individual ganglion cells and the underlying assumptions. We show that backpropagation leads to a model which is similar to the mathematical descriptions of retinal processing advanced by Marr. We present the results obtained when our model is used to simulate the effect of retinal processing on images. Empirical results about the speedups obtained when this model is implemented on parallel architectures are also reported.en_US
dc.language.isoen_USen_US
dc.titleBACKPROPAGATION LEARNS MARR OPERATORen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/BF00202567en_US
dc.identifier.journalBIOLOGICAL CYBERNETICSen_US
dc.citation.volume70en_US
dc.citation.issue1en_US
dc.citation.spage65en_US
dc.citation.epage73en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1993ML81500007-
dc.citation.woscount2-
顯示於類別:期刊論文