Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, YHen_US
dc.contributor.authorLu, CLen_US
dc.contributor.authorTang, CYen_US
dc.date.accessioned2014-12-08T15:41:30Z-
dc.date.available2014-12-08T15:41:30Z-
dc.date.issued2003en_US
dc.identifier.isbn3-540-40534-8en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/28223-
dc.description.abstractGiven a graph G = (V, E) with a length function on edges and a subset R of V, the full Steiner tree is defined to be a Steiner tree in G with all the vertices of R as its leaves. Then the full Steiner tree problem is to find a full Steiner tree in G with minimum length, and the bottleneck full Steiner tree problem is to find a full Steiner tree T in G such that the length of the largest edge in T is minimized. In this paper, we present a new approximation algorithm with performance ratio 2p for the full Steiner tree problem, where p is the best-known performance ratio for the Steiner tree problem. Moreover, we give an exact algorithm of O(E log E) time to solve the bottleneck full Steiner tree problem.en_US
dc.language.isoen_USen_US
dc.titleOn the full and bottleneck full Steiner tree problemsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalCOMPUTING AND COMBINATORICS, PROCEEDINGSen_US
dc.citation.volume2697en_US
dc.citation.spage122en_US
dc.citation.epage129en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.identifier.wosnumberWOS:000185044800014-
Appears in Collections:Conferences Paper