Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, ZLen_US
dc.contributor.authorWang, WCen_US
dc.contributor.authorChern, ILen_US
dc.contributor.authorLai, MCen_US
dc.date.accessioned2014-12-08T15:41:30Z-
dc.date.available2014-12-08T15:41:30Z-
dc.date.issued2003en_US
dc.identifier.issn1064-8275en_US
dc.identifier.urihttp://hdl.handle.net/11536/28227-
dc.identifier.urihttp://dx.doi.org/10.1137/S106482750139618Xen_US
dc.description.abstractIn this paper, numerical methods are proposed for some interface problems in polar or Cartesian coordinates. The new methods are based on a formulation that transforms the interface problem with a nonsmooth or discontinuous solution into a problem with a smooth solution. The new formulation leads to a simple second order finite difference scheme for the partial differential equation and a new interpolation scheme for the normal derivative of the solution. In conjunction with the fast immersed interface method, a fast solver has been developed for the interface problems with a piecewise constant but a discontinuous coefficient using the new formulation in a polar coordinate system.en_US
dc.language.isoen_USen_US
dc.subjectinterface problemsen_US
dc.subjectsingular sourceen_US
dc.subjectdelta functionen_US
dc.subjectlevel set functionen_US
dc.subjectdiscontinuous coefficientsen_US
dc.subjectpolar coordinatesen_US
dc.subjectimmersed interface methoden_US
dc.subjectsmooth extensionen_US
dc.subjectfast Poisson solveren_US
dc.titleNew formulations for interface problems in polar coordinatesen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/S106482750139618Xen_US
dc.identifier.journalSIAM JOURNAL ON SCIENTIFIC COMPUTINGen_US
dc.citation.volume25en_US
dc.citation.issue1en_US
dc.citation.spage224en_US
dc.citation.epage245en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000186546800011-
dc.citation.woscount20-
Appears in Collections:Articles


Files in This Item:

  1. 000186546800011.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.