Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, YCen_US
dc.contributor.authorChen, RSen_US
dc.contributor.authorTzeng, GHen_US
dc.date.accessioned2014-12-08T15:41:31Z-
dc.date.available2014-12-08T15:41:31Z-
dc.date.issued2003-01-01en_US
dc.identifier.issn0167-8655en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0167-8655(02)00273-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/28232-
dc.description.abstractData mining techniques can be used to discover useful patterns by exploring and analyzing data, so, it is feasible to incorporate data mining techniques into the classification process to discover useful patterns or classification rules from training samples. This paper thus proposes a data mining technique to discover fuzzy classification rules based on the well-known Apriori algorithm. Significantly, since it is difficult for users to specify the minimum fuzzy support used to determine the frequent fuzzy grids or the minimum fuzzy confidence used to determine the effective classification rules derived from frequent fuzzy grids, therefore the genetic algorithms are incorporated into the proposed method to determine those two thresholds with binary chromosomes. For classification generalization ability, the simulation results from the iris data and the appendicitis data demonstrate that the proposed method performs well in comparison with other classification methods. (C) 2002 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectdata miningen_US
dc.subjectfuzzy setsen_US
dc.subjectclassification problemsen_US
dc.subjectgenetic algorithmsen_US
dc.titleFinding fuzzy classification rules using data mining techniquesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0167-8655(02)00273-8en_US
dc.identifier.journalPATTERN RECOGNITION LETTERSen_US
dc.citation.volume24en_US
dc.citation.issue1-3en_US
dc.citation.spage509en_US
dc.citation.epage519en_US
dc.contributor.department科技管理研究所zh_TW
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentInstitute of Management of Technologyen_US
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000180105400045-
dc.citation.woscount54-
Appears in Collections:Articles


Files in This Item:

  1. 000180105400045.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.