完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, KHen_US
dc.contributor.authorChuang, SLen_US
dc.contributor.authorPearn, WLen_US
dc.date.accessioned2014-12-08T15:41:41Z-
dc.date.available2014-12-08T15:41:41Z-
dc.date.issued2002-12-01en_US
dc.identifier.issn0307-904Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0307-904X(02)00056-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/28345-
dc.description.abstractWe study a single removable server in an M/G/1 queueing system operating under the N policy in steady-state. The server may be turned on at arrival epochs or off at departure epochs. Using the maximum entropy principle with several well-known constraint, we develop the approximate formulae for the probability distributions of the number of customers and the expected waiting time in the queue. We perform a comparative analysis between the approximate results with exact analytic results for three different service time distributions, exponential, 2-stage Erlang, and 2-stage hyper-exponential, The maximum entropy approximation approach is accurate enough for practical purposes. We demonstrate, through the maximum entropy principle results, that the N policy M/G/1 queueing system is sufficiently robust to the variations of service time distribution functions. (C) 2002 Elsevier Science Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectcontrolen_US
dc.subjectmaximum entropyen_US
dc.subjectLagrange's methoden_US
dc.subjectM/G/1 queueen_US
dc.titleMaximum entropy analysis to the N policy M/G/1 queueing system with a removable serveren_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0307-904X(02)00056-2en_US
dc.identifier.journalAPPLIED MATHEMATICAL MODELLINGen_US
dc.citation.volume26en_US
dc.citation.issue12en_US
dc.citation.spage1151en_US
dc.citation.epage1162en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000179298100004-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000179298100004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。