Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fu, HL | en_US |
dc.contributor.author | Sun, IF | en_US |
dc.date.accessioned | 2014-12-08T15:41:48Z | - |
dc.date.available | 2014-12-08T15:41:48Z | - |
dc.date.issued | 2002-11-01 | en_US |
dc.identifier.issn | 0315-3681 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/28427 | - |
dc.description.abstract | An embedding is said to be face 2-colorable if the faces of the embedding can be colored with two colors such that no two monochromatic faces share an edge. In this paper, it is proved that a face 2-colorable quadrilateral embedding of the complete bipartite graph K-m,K-n. exists if and only if m and n are even. Moreover, we obtain a different proof of gamma(K-m,K-n) = [(m-2)(n-2)/4] which does not use rota4 tional scheme and the methods known. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Face 2-colorable quadrilateral embeddings of complete bipartite graphs | en_US |
dc.type | Article | en_US |
dc.identifier.journal | UTILITAS MATHEMATICA | en_US |
dc.citation.volume | 62 | en_US |
dc.citation.issue | en_US | |
dc.citation.spage | 117 | en_US |
dc.citation.epage | 129 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000179984000008 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |