Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, HLen_US
dc.contributor.authorSun, IFen_US
dc.date.accessioned2014-12-08T15:41:48Z-
dc.date.available2014-12-08T15:41:48Z-
dc.date.issued2002-11-01en_US
dc.identifier.issn0315-3681en_US
dc.identifier.urihttp://hdl.handle.net/11536/28427-
dc.description.abstractAn embedding is said to be face 2-colorable if the faces of the embedding can be colored with two colors such that no two monochromatic faces share an edge. In this paper, it is proved that a face 2-colorable quadrilateral embedding of the complete bipartite graph K-m,K-n. exists if and only if m and n are even. Moreover, we obtain a different proof of gamma(K-m,K-n) = [(m-2)(n-2)/4] which does not use rota4 tional scheme and the methods known.en_US
dc.language.isoen_USen_US
dc.titleFace 2-colorable quadrilateral embeddings of complete bipartite graphsen_US
dc.typeArticleen_US
dc.identifier.journalUTILITAS MATHEMATICAen_US
dc.citation.volume62en_US
dc.citation.issueen_US
dc.citation.spage117en_US
dc.citation.epage129en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000179984000008-
dc.citation.woscount0-
Appears in Collections:Articles