Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lai, MC | en_US |
dc.date.accessioned | 2014-12-08T15:41:51Z | - |
dc.date.available | 2014-12-08T15:41:51Z | - |
dc.date.issued | 2002-10-10 | en_US |
dc.identifier.issn | 0021-9991 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1006/jcph.2002.7172 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/28459 | - |
dc.description.abstract | We present a simple and efficient compact fourth-order Poisson solver in polar coordinates. This solver relies on the truncated Fourier series expansion, where the differential equations of the Fourier coefficients are solved by the compact fourth-order finite difference scheme. By shifting a grid a half mesh away from the origin and incorporating the symmetry constraint of Fourier coefficients, we can easily handle coordinate singularities without pole conditions. The numerical evidence confirms fourth-order accuracy for the problem on an annulus and third-order accuracy for the problem on a disk. In addition, a simple and comparably accurate approximation for the derivatives of the solution is also presented. (C) 2002 Elsevier Science (USA). | en_US |
dc.language.iso | en_US | en_US |
dc.subject | fast Poisson solver | en_US |
dc.subject | polar coordinates | en_US |
dc.subject | compact scheme | en_US |
dc.subject | FFT | en_US |
dc.title | A simple compact fourth-order Poisson solver on polar geometry | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1006/jcph.2002.7172 | en_US |
dc.identifier.journal | JOURNAL OF COMPUTATIONAL PHYSICS | en_US |
dc.citation.volume | 182 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 337 | en_US |
dc.citation.epage | 345 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000179183200014 | - |
dc.citation.woscount | 16 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.