完整後設資料紀錄
DC 欄位語言
dc.contributor.authorThompson, Pen_US
dc.contributor.authorYang, EKen_US
dc.contributor.authorChen, LAen_US
dc.date.accessioned2014-12-08T15:42:02Z-
dc.date.available2014-12-08T15:42:02Z-
dc.date.issued2002-09-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://hdl.handle.net/11536/28567-
dc.description.abstractIn Chen and Chiang [2] and Chen, Thompson and Hung [3], the symmetric trimmed mean has been shown, for various linear models, to have the efficiency of having asymptotic covariance matrices close to the CramerRao lower bounds for some heavy tail error distributions. In this paper, we investigate some further theoretical results for this symmetric trimmed mean for the linear regression model. From the nonparametric point of view, we develop a robust version of the Gauss-Markov theorem for the problem of estimating regression parameter vector beta and parametric vector function Cbeta where the best estimators are this trimmed mean and C multiplied by it, respectively. In addition, we show that these best estimators are the best Mallows-type bounded influence linear symmetric trimmed means. Finally, from the parametric aspect, we show that the symmetric trimmed mean is Rao's first order efficient for a heavy tail error distribution.en_US
dc.language.isoen_USen_US
dc.subjectGauss-Markov theoremen_US
dc.subjectlinear regressionen_US
dc.subjectlinear symmetric trimmed meanen_US
dc.subjectMallows-type bounded influenceen_US
dc.subjectRao's first order efficiencyen_US
dc.titleRobust type Gauss-Markov theorem and Rao's first order efficiency for the symmetric trimmed meanen_US
dc.typeArticleen_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume6en_US
dc.citation.issue3en_US
dc.citation.spage355en_US
dc.citation.epage367en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000178773200004-
dc.citation.woscount1-
顯示於類別:期刊論文