Full metadata record
DC FieldValueLanguage
dc.contributor.authorSu, CTen_US
dc.contributor.authorHsu, HHen_US
dc.contributor.authorTsai, CHen_US
dc.date.accessioned2014-12-08T15:42:19Z-
dc.date.available2014-12-08T15:42:19Z-
dc.date.issued2002-06-01en_US
dc.identifier.issn0887-4417en_US
dc.identifier.urihttp://hdl.handle.net/11536/28744-
dc.description.abstractDespite their diverse applications in many domains, neural networks are difficult to interpret owning the lack of mathematical models to express the training result. While adopting the rule extraction method to develop different algorithms, many researchers normally simplify a network's structure and then extract rules from the simplified networks, This type of data limits such conventional approaches when attempting to remove the unnecessary connections. In addition to developing network pruning and extraction algorithms, this work attempts to determine the important input nodes. In the proposed algorithms, the type of input data is not limited to binary, discrete or continuous. Moreover, two numerical examples are analyzed. Comparing the results from the proposed algorithms with those from See5 demonstrates the effectiveness of the proposed algorithms.en_US
dc.language.isoen_USen_US
dc.subjectneural networken_US
dc.subjectrule extractionen_US
dc.subjectSee5en_US
dc.subjectdecision treeen_US
dc.subjectclassificationen_US
dc.titleKnowledge mining from trained neural networksen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF COMPUTER INFORMATION SYSTEMSen_US
dc.citation.volume42en_US
dc.citation.issue4en_US
dc.citation.spage61en_US
dc.citation.epage70en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000176935000009-
dc.citation.woscount16-
Appears in Collections:Articles