標題: Model-based synthetic fuzzy logic controller for indirect blood pressure measurement
作者: Wang, JJ
Lin, CT
Liu, SH
Wen, ZC
電控工程研究所
Institute of Electrical and Control Engineering
關鍵字: compliance;fuzzy logic control;mean arterial pressure;oscillometry;tonometer
公開日期: 1-六月-2002
摘要: In this paper, a new measurement system for the non-invasive monitoring of the continuous blood pressure waveform in the radial artery is presented. The proposed system comprises a model-based fuzzy logic controller, an arterial tonometer and a micro syringe device. The flexible diaphragm tonometer is to register the continuous blood pressure waveform. To obtain accurate measurement without distortion, the tonometer's mean chamber pressure must be kept equal to the mean arterial pressure (MAP), the so-called optimal coupling condition, such that the arterial vessel has the maximum compliance. Since the MAP cannot be measured directly, to keep the optimal coupling condition becomes a tracking control problem with unknown desired trajectory. To solve this dilemma, a model-based fuzzy logic controller is designed to compensate the change of MAP by applying a counter pressure on the tonometer chamber through the micro syringe device. The proposed controller consists of a model-based predictor and a synthetic fuzzy logic controller (SFLC). The model-based predictor is to estimate the MAPs changing tendency based on the identified arterial pressure-volume model. The SFLC is composed of three subcontrollers, each of which is a simple fuzzy logic controller, for processing the three changing states of the MAP: ascending, descending and stabilizing states, respectively. Simulation results show that, for the MAP with changing rates of +/-10, +/-20 or +/-30 mm Hg/min, the model-based SFLC can beat-to-beat adjust the tonometer's chamber pressure only with a mean square error of 1.9, 2.2, or 2.8 nun Hg, respectively.
URI: http://dx.doi.org/10.1109/TSMCB.2002.999807
http://hdl.handle.net/11536/28752
ISSN: 1083-4419
DOI: 10.1109/TSMCB.2002.999807
期刊: IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS
Volume: 32
Issue: 3
起始頁: 306
結束頁: 315
顯示於類別:期刊論文


文件中的檔案:

  1. 000175449800006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。