完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Tsai, WH | en_US |
dc.contributor.author | Chang, WW | en_US |
dc.date.accessioned | 2014-12-08T15:42:40Z | - |
dc.date.available | 2014-12-08T15:42:40Z | - |
dc.date.issued | 2002-03-01 | en_US |
dc.identifier.issn | 0167-6393 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/S0167-6393(00)00090-X | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/28962 | - |
dc.description.abstract | This study focuses on the parametric stochastic modeling of characteristic sound features that distinguish languages from one another. A new stochastic model. the so-called Gaussian mixture bigram model (GMBM), that allows exploitation of the acoustic feature bigram statistics without requiring transcribed training data is introduced. For greater efficiency, a minimum classification error (MCE) algorithm is employed to accomplish discriminative training of a GMBM-based Chinese dialect identification system. Simulation results demonstrate the effectiveness of the GMBM for dialect-specific acoustic modeling, and use of this model allows the proposed system to distinguish between the three major Chinese dialects spoken in Taiwan with 94.4% accuracy. (C) 2002 Elsevier Science B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Gaussian mixture bigram model | en_US |
dc.subject | minimum classification error algorithm | en_US |
dc.subject | Chinese dialect identification | en_US |
dc.title | Discriminative training of Gaussian mixture bigram models with application to Chinese dialect identification | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/S0167-6393(00)00090-X | en_US |
dc.identifier.journal | SPEECH COMMUNICATION | en_US |
dc.citation.volume | 36 | en_US |
dc.citation.issue | 3-4 | en_US |
dc.citation.spage | 317 | en_US |
dc.citation.epage | 326 | en_US |
dc.contributor.department | 電信工程研究所 | zh_TW |
dc.contributor.department | Institute of Communications Engineering | en_US |
dc.identifier.wosnumber | WOS:000173774700010 | - |
dc.citation.woscount | 10 | - |
顯示於類別: | 期刊論文 |