完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, WHen_US
dc.contributor.authorChang, WWen_US
dc.date.accessioned2014-12-08T15:42:40Z-
dc.date.available2014-12-08T15:42:40Z-
dc.date.issued2002-03-01en_US
dc.identifier.issn0167-6393en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0167-6393(00)00090-Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/28962-
dc.description.abstractThis study focuses on the parametric stochastic modeling of characteristic sound features that distinguish languages from one another. A new stochastic model. the so-called Gaussian mixture bigram model (GMBM), that allows exploitation of the acoustic feature bigram statistics without requiring transcribed training data is introduced. For greater efficiency, a minimum classification error (MCE) algorithm is employed to accomplish discriminative training of a GMBM-based Chinese dialect identification system. Simulation results demonstrate the effectiveness of the GMBM for dialect-specific acoustic modeling, and use of this model allows the proposed system to distinguish between the three major Chinese dialects spoken in Taiwan with 94.4% accuracy. (C) 2002 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectGaussian mixture bigram modelen_US
dc.subjectminimum classification error algorithmen_US
dc.subjectChinese dialect identificationen_US
dc.titleDiscriminative training of Gaussian mixture bigram models with application to Chinese dialect identificationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0167-6393(00)00090-Xen_US
dc.identifier.journalSPEECH COMMUNICATIONen_US
dc.citation.volume36en_US
dc.citation.issue3-4en_US
dc.citation.spage317en_US
dc.citation.epage326en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000173774700010-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000173774700010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。