完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, MDen_US
dc.contributor.authorSun, CTen_US
dc.date.accessioned2014-12-08T15:42:47Z-
dc.date.available2014-12-08T15:42:47Z-
dc.date.issued2002-03-01en_US
dc.identifier.issn1016-2364en_US
dc.identifier.urihttp://hdl.handle.net/11536/29001-
dc.description.abstractFuzzy modeling generally comprises structure identification and parameter identification. The former determines the structure of a rule-base, whereas the latter determines the contents of each rule. Applying neural networks or genetic algorithms to identify the parameter sets and structures of a fuzzy system is increasingly popular owing to their ability to learn and adapt. However, most conventional approaches cannot integrate structure identification and parameter identification efficiently. This work presents a general approach to fuzzy modeling, i.e. fuzzy polyploidy genetic algorithms which integrate structure identification and parameter identification in a single evolution process. Capable of simulating the structural adaptation process of natural evolution, the proposed model is a generalized model for simultaneously optimizing both structure and parameters of fuzzy rule-bases. The structural adaptation proposed herein provides complete structural operations to simulate structural variation process and simple to complex life form of natural evolution. Illustrative examples involving typical FLCs, such as Mamdani and TSK models, demonstrate the effectiveness of applying the polyploidy scheme.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy modelingen_US
dc.subjectgenetic algorithmsen_US
dc.subjectfuzzy logic controllersen_US
dc.subjectpolyploidyen_US
dc.subjectstructural adaptationen_US
dc.titleFuzzy modeling employing fuzzy polyploidy genetic algorithmsen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF INFORMATION SCIENCE AND ENGINEERINGen_US
dc.citation.volume18en_US
dc.citation.issue2en_US
dc.citation.spage163en_US
dc.citation.epage186en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000175565100002-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000175565100002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。