完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, CLen_US
dc.contributor.authorChing, YTen_US
dc.date.accessioned2014-12-08T15:42:49Z-
dc.date.available2014-12-08T15:42:49Z-
dc.date.issued2002-02-01en_US
dc.identifier.issn0091-3286en_US
dc.identifier.urihttp://dx.doi.org/10.1117/1.1428298en_US
dc.identifier.urihttp://hdl.handle.net/11536/29028-
dc.description.abstractImage segmentation is a process for dividing a given image into meaningful regions with homogeneous properties. A new two step approach is proposed for medical image segmentation using a fuzzy Hopfield neural network based on both global and local gray-level information. The membership function simulated with neuron outputs is determined using a fuzzy set, and the synaptic connection weights between the neurons are predetermined and fixed to improve the efficiency of the neural network. The proposed method needs initial cluster centers. The initial centers can be obtained from the global information about the distribution of the intensities in the image, or from prior knowledge of the intensity of the region of interest. It is shown by experiments that the proposed fuzzy Hopfield neural network approach is better than most previous approaches. We also show that the global information can be used by applying the hard c-means to estimate the initial cluster centers. (C) 2002 Society of Photo-Optical Instrumentation Engineers.en_US
dc.language.isoen_USen_US
dc.subjectmedical image segmentationen_US
dc.subjectfuzzy clusteringen_US
dc.subjectHopfield neural networken_US
dc.titleFuzzy Hopfield neural network with fixed weight for medical image segmentationen_US
dc.typeArticleen_US
dc.identifier.doi10.1117/1.1428298en_US
dc.identifier.journalOPTICAL ENGINEERINGen_US
dc.citation.volume41en_US
dc.citation.issue2en_US
dc.citation.spage351en_US
dc.citation.epage358en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000174077400011-
dc.citation.woscount8-
顯示於類別:期刊論文


文件中的檔案:

  1. 000174077400011.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。