Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, JMen_US
dc.contributor.authorLin, CJen_US
dc.contributor.authorKao, CYen_US
dc.date.accessioned2014-12-08T15:42:57Z-
dc.date.available2014-12-08T15:42:57Z-
dc.date.issued2002en_US
dc.identifier.issn0305-215Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/29100-
dc.identifier.urihttp://dx.doi.org/10.1080/03052150214019en_US
dc.description.abstractThis paper studies an evolutionary algorithm for global optimization. Based on family competition and adaptive rules, the proposed approach consists of global and local strategies by integrating decreasing-based mutations and self-adaptive mutations. The proposed approach is experimentally analyzed by showing that its components can integrate with one another and possess good local and global properties. Following the description of implementation details, the approach is then applied to several widely used test sets, including problems from international contests on evolutionary optimization. Numerical results indicate that the new approach performs very robustly and is competitive with other well-known evolutionary algorithms.en_US
dc.language.isoen_USen_US
dc.subjectevolutionary algorithmsen_US
dc.subjectfamily competitionen_US
dc.subjectmultiple mutation operatorsen_US
dc.subjectadaptive rulesen_US
dc.subjectglobal optimizationen_US
dc.titleA robust evolutionary algorithm for global optimizationen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03052150214019en_US
dc.identifier.journalENGINEERING OPTIMIZATIONen_US
dc.citation.volume34en_US
dc.citation.issue5en_US
dc.citation.spage405en_US
dc.citation.epage425en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000178078200001-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000178078200001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.