完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chen, YC | en_US |
dc.contributor.author | Fu, HL | en_US |
dc.contributor.author | Sun, IF | en_US |
dc.date.accessioned | 2014-12-08T15:43:05Z | - |
dc.date.available | 2014-12-08T15:43:05Z | - |
dc.date.issued | 2002-01-01 | en_US |
dc.identifier.issn | 0381-7032 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/29150 | - |
dc.description.abstract | The type of a vertex v in a p-page book-embedding is the p x 2 matrix of nonnegative integers [GRAPHICS] where l(v,i) (respectively, r(v,i)) is the number of edges incident to v that connect on page i to vertices lying to the left (respectively, to the right) of v. The typenumber of a graph G, T(G), is the minimum number of different types among all the book-embeddings of G. In this paper, we disprove the conjecture by J. Buss et. al. which says for n greater than or equal to 4, T(L-n) is not less than 5 and prove that T(L-n) = 4 for n greater than or equal to 3. | en_US |
dc.language.iso | en_US | en_US |
dc.title | A study of typenumber in book-embedding | en_US |
dc.type | Article | en_US |
dc.identifier.journal | ARS COMBINATORIA | en_US |
dc.citation.volume | 62 | en_US |
dc.citation.issue | en_US | |
dc.citation.spage | 97 | en_US |
dc.citation.epage | 103 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000173922800007 | - |
dc.citation.woscount | 1 | - |
顯示於類別: | 期刊論文 |