完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, YCen_US
dc.contributor.authorFu, HLen_US
dc.contributor.authorSun, IFen_US
dc.date.accessioned2014-12-08T15:43:05Z-
dc.date.available2014-12-08T15:43:05Z-
dc.date.issued2002-01-01en_US
dc.identifier.issn0381-7032en_US
dc.identifier.urihttp://hdl.handle.net/11536/29150-
dc.description.abstractThe type of a vertex v in a p-page book-embedding is the p x 2 matrix of nonnegative integers [GRAPHICS] where l(v,i) (respectively, r(v,i)) is the number of edges incident to v that connect on page i to vertices lying to the left (respectively, to the right) of v. The typenumber of a graph G, T(G), is the minimum number of different types among all the book-embeddings of G. In this paper, we disprove the conjecture by J. Buss et. al. which says for n greater than or equal to 4, T(L-n) is not less than 5 and prove that T(L-n) = 4 for n greater than or equal to 3.en_US
dc.language.isoen_USen_US
dc.titleA study of typenumber in book-embeddingen_US
dc.typeArticleen_US
dc.identifier.journalARS COMBINATORIAen_US
dc.citation.volume62en_US
dc.citation.issueen_US
dc.citation.spage97en_US
dc.citation.epage103en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000173922800007-
dc.citation.woscount1-
顯示於類別:期刊論文