完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChiou, YCen_US
dc.contributor.authorLan, LWen_US
dc.date.accessioned2014-12-08T15:43:10Z-
dc.date.available2014-12-08T15:43:10Z-
dc.date.issued2001-12-01en_US
dc.identifier.issn0377-2217en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0377-2217(00)00320-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/29222-
dc.description.abstractThis study employs genetic algorithms to solve clustering problems. Three models, SICM, STCM, CSPM, are developed according to different coding/decoding techniques. The effectiveness and efficiency of these models under varying problem sizes are analyzed in comparison to a conventional statistics clustering method (the agglomerative hierarchical clustering method). The results for small scale problems (10-50 objects) indicate that CSPM is the most effective but least efficient method, STCM is second most effective and efficient, SICM is least effective because of its long chromosome. The results for medium-to-large scale problems (50-200 objects) indicate that CSPM is still the most effective method. Furthermore, we have applied CSPM to solve an exemplified p-Median problem. The good results demonstrate that CSPM is usefully applicable. (C) 2001 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectgenetic algorithmsen_US
dc.subjectclusteringen_US
dc.subjectp-median problemen_US
dc.titleGenetic clustering algorithmsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0377-2217(00)00320-9en_US
dc.identifier.journalEUROPEAN JOURNAL OF OPERATIONAL RESEARCHen_US
dc.citation.volume135en_US
dc.citation.issue2en_US
dc.citation.spage413en_US
dc.citation.epage427en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000171207200014-
dc.citation.woscount35-
顯示於類別:期刊論文


文件中的檔案:

  1. 000171207200014.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。