完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chiou, YC | en_US |
dc.contributor.author | Lan, LW | en_US |
dc.date.accessioned | 2014-12-08T15:43:10Z | - |
dc.date.available | 2014-12-08T15:43:10Z | - |
dc.date.issued | 2001-12-01 | en_US |
dc.identifier.issn | 0377-2217 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/S0377-2217(00)00320-9 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/29222 | - |
dc.description.abstract | This study employs genetic algorithms to solve clustering problems. Three models, SICM, STCM, CSPM, are developed according to different coding/decoding techniques. The effectiveness and efficiency of these models under varying problem sizes are analyzed in comparison to a conventional statistics clustering method (the agglomerative hierarchical clustering method). The results for small scale problems (10-50 objects) indicate that CSPM is the most effective but least efficient method, STCM is second most effective and efficient, SICM is least effective because of its long chromosome. The results for medium-to-large scale problems (50-200 objects) indicate that CSPM is still the most effective method. Furthermore, we have applied CSPM to solve an exemplified p-Median problem. The good results demonstrate that CSPM is usefully applicable. (C) 2001 Elsevier Science B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | genetic algorithms | en_US |
dc.subject | clustering | en_US |
dc.subject | p-median problem | en_US |
dc.title | Genetic clustering algorithms | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/S0377-2217(00)00320-9 | en_US |
dc.identifier.journal | EUROPEAN JOURNAL OF OPERATIONAL RESEARCH | en_US |
dc.citation.volume | 135 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 413 | en_US |
dc.citation.epage | 427 | en_US |
dc.contributor.department | 運輸與物流管理系 註:原交通所+運管所 | zh_TW |
dc.contributor.department | Department of Transportation and Logistics Management | en_US |
dc.identifier.wosnumber | WOS:000171207200014 | - |
dc.citation.woscount | 35 | - |
顯示於類別: | 期刊論文 |