完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, GJen_US
dc.contributor.authorJuan, STen_US
dc.contributor.authorLiu, DDFen_US
dc.date.accessioned2014-12-08T15:43:21Z-
dc.date.available2014-12-08T15:43:21Z-
dc.date.issued2001-10-01en_US
dc.identifier.issn0381-7032en_US
dc.identifier.urihttp://hdl.handle.net/11536/29347-
dc.description.abstractGiven a graph, a no-hole 2-distant coloring (also called N-coloring) is a function f that assigns to each vertex a non-negative integer (color) such that the separation of the colors of any pair of adjacent vertices must be at least 2, and all the colors used by f form a consecutive set (the no-hole assumption). The minimum consecutive N-span of G, csp(1)(G), is the minimum difference of the largest and the smallest colors used in an N-coloring of G, if there exists such a coloring; otherwise, define csp(1)(G) = infinity. Here we investigate the exact values of csp(1)(G) for unit interval graphs (also known as 1-unit sphere graphs). Earlier results by Roberts [18] indicate that if G is a unit interval graph on n vertices, then csp(1) (G) is either 2 chi (G) - 1 or 2 chi (G) - 2, if n > 2 chi (G) - 1; csp(1)(G) = infinity, if n < 2<chi>(G) - 1, where chi (G) denotes the chromatic number. We show that in the former case (when n > 2 chi (G) - 1), both values of csp(1)(G) are attained, and give several families of unit interval graphs such that csp(1)(G) = 2 chi (G) - 2. In addition, the exact values of csp(1)(G) are completely determined for unit interval graphs with chi (G) = 3.en_US
dc.language.isoen_USen_US
dc.titleNo-hole 2-distant colorings for unit interval graphsen_US
dc.typeArticleen_US
dc.identifier.journalARS COMBINATORIAen_US
dc.citation.volume61en_US
dc.citation.issueen_US
dc.citation.spage233en_US
dc.citation.epage244en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000172037000020-
dc.citation.woscount3-
顯示於類別:期刊論文