Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, JJ | en_US |
dc.contributor.author | Sung, TY | en_US |
dc.contributor.author | Hsu, LH | en_US |
dc.date.accessioned | 2014-12-08T15:43:42Z | - |
dc.date.available | 2014-12-08T15:43:42Z | - |
dc.date.issued | 2001-07-01 | en_US |
dc.identifier.issn | 1016-2364 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/29556 | - |
dc.description.abstract | In this paper, we construct a family of graphs denoted by Eye(s) that are 3-regular, 3-connected, planar, hamiltonian, edge hamiltonian, and also minimal 1-hamiltonian. Furthermore, the diameter of Eye(s) is 0(log n), where n is the number of vertices in the Mph and to be precise, n = 6(2(s) - 1) vertices. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | hamiltonian | en_US |
dc.subject | edge hamiltonian | en_US |
dc.subject | 1-vertex hamiltonian | en_US |
dc.subject | I-edge hamiltonian | en_US |
dc.subject | 1-hamiltonian | en_US |
dc.subject | diameter | en_US |
dc.subject | Moore bound | en_US |
dc.title | A family of trivalent 1-hamiltonian graphs with diameter O(log n) | en_US |
dc.type | Article | en_US |
dc.identifier.journal | JOURNAL OF INFORMATION SCIENCE AND ENGINEERING | en_US |
dc.citation.volume | 17 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 535 | en_US |
dc.citation.epage | 548 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000170207800001 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |