完整後設資料紀錄
DC 欄位語言
dc.contributor.authorBan, JCen_US
dc.contributor.authorLin, SSen_US
dc.contributor.authorShih, CWen_US
dc.date.accessioned2014-12-08T15:43:50Z-
dc.date.available2014-12-08T15:43:50Z-
dc.date.issued2001-06-01en_US
dc.identifier.issn0218-1274en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218127401002900en_US
dc.identifier.urihttp://hdl.handle.net/11536/29637-
dc.description.abstractThis work investigates mosaic patterns for the one-dimensional cellular neural networks with various boundary conditions. These patterns can be formed by combining the basic patterns. The parameter space is partitioned so that the existence of basic patterns can be determined for each parameter region. The mosaic patterns can then be completely characterized through formulating suitable transition matrices and boundary-pattern matrices. These matrices generate the patterns for the interior cells from the basic patterns and indicate the feasible patterns for the boundary cells. As an illustration, we elaborate on the cellular neural networks with a general 1 x 3 template. The exact number of mosaic patterns will be computed for the system with the Dirichlet, Neumann and periodic boundary conditions respectively. The idea in this study can be extended to other one-dimensional lattice systems with finite-range interaction.en_US
dc.language.isoen_USen_US
dc.titleExact number of mosaic patterns in cellular neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218127401002900en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOSen_US
dc.citation.volume11en_US
dc.citation.issue6en_US
dc.citation.spage1645en_US
dc.citation.epage1653en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000170610400005-
dc.citation.woscount8-
顯示於類別:期刊論文


文件中的檔案:

  1. 000170610400005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。