完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHUNG, CNen_US
dc.contributor.authorHSU, LHen_US
dc.contributor.authorSUNG, TYen_US
dc.date.accessioned2014-12-08T15:04:28Z-
dc.date.available2014-12-08T15:04:28Z-
dc.date.issued1993-07-01en_US
dc.identifier.issn0028-3045en_US
dc.identifier.urihttp://dx.doi.org/10.1002/net.3230230413en_US
dc.identifier.urihttp://hdl.handle.net/11536/2966-
dc.description.abstractLet G = (VE) be an undirected graph having an edge weight w(e) greater-than-or-equal-to 0 for each e is-an-element-of E. An edge is called a most vital edge (with respect to weighted matching) if its removal from G results in the largest decrease in the total weight of the maximum weighted matching. In this paper, we study the most vital edges of matching in a weighted bipartite graph. We present an 0(n3) algorithm to obtain the most vital edges.en_US
dc.language.isoen_USen_US
dc.titleTHE MOST VITAL EDGES OF MATCHING IN A BIPARTITE GRAPHen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/net.3230230413en_US
dc.identifier.journalNETWORKSen_US
dc.citation.volume23en_US
dc.citation.issue4en_US
dc.citation.spage309en_US
dc.citation.epage313en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1993LH18300012-
dc.citation.woscount7-
顯示於類別:期刊論文