Full metadata record
DC FieldValueLanguage
dc.contributor.authorJiang, MFen_US
dc.contributor.authorTseng, SSen_US
dc.contributor.authorSu, CMen_US
dc.date.accessioned2014-12-08T15:43:53Z-
dc.date.available2014-12-08T15:43:53Z-
dc.date.issued2001-05-01en_US
dc.identifier.issn0167-8655en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0167-8655(00)00131-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/29677-
dc.description.abstractIn this paper, a two-phase clustering algorithm for outliers detection is proposed. Tn;e first modify the traditional k-means algorithm in Phase 1 by using a heuristic "if one new input pattern is far enough away from all clusters centers, then assign it as a new cluster center". It results that the data points in the same cluster may be most likely all outliers or all non-outliers. And then we construct a minimum spanning tree (MST) in Phase 2 and remove the longest edge. The small clusters, the tree with less number of nodes, are selected and regarded as outlier. The experimental results show that our process works well. (C) 2001 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectoutliersen_US
dc.subjectk-means clusteringen_US
dc.subjecttwo-phase clusteringen_US
dc.subjectMSTen_US
dc.titleTwo-phase clustering process for outliers detectionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0167-8655(00)00131-8en_US
dc.identifier.journalPATTERN RECOGNITION LETTERSen_US
dc.citation.volume22en_US
dc.citation.issue6-7en_US
dc.citation.spage691en_US
dc.citation.epage700en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000168354200009-
dc.citation.woscount63-
Appears in Collections:Articles


Files in This Item:

  1. 000168354200009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.