標題: Two-phase clustering process for outliers detection
作者: Jiang, MF
Tseng, SS
Su, CM
資訊工程學系
Department of Computer Science
關鍵字: outliers;k-means clustering;two-phase clustering;MST
公開日期: 1-五月-2001
摘要: In this paper, a two-phase clustering algorithm for outliers detection is proposed. Tn;e first modify the traditional k-means algorithm in Phase 1 by using a heuristic "if one new input pattern is far enough away from all clusters centers, then assign it as a new cluster center". It results that the data points in the same cluster may be most likely all outliers or all non-outliers. And then we construct a minimum spanning tree (MST) in Phase 2 and remove the longest edge. The small clusters, the tree with less number of nodes, are selected and regarded as outlier. The experimental results show that our process works well. (C) 2001 Elsevier Science B.V. All rights reserved.
URI: http://dx.doi.org/10.1016/S0167-8655(00)00131-8
http://hdl.handle.net/11536/29677
ISSN: 0167-8655
DOI: 10.1016/S0167-8655(00)00131-8
期刊: PATTERN RECOGNITION LETTERS
Volume: 22
Issue: 6-7
起始頁: 691
結束頁: 700
顯示於類別:期刊論文


文件中的檔案:

  1. 000168354200009.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。