Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, CMen_US
dc.contributor.authorLu, HHSen_US
dc.contributor.authorHan, KCen_US
dc.date.accessioned2014-12-08T15:43:58Z-
dc.date.available2014-12-08T15:43:58Z-
dc.date.issued2001-04-01en_US
dc.identifier.issn0301-5629en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0301-5629(00)00323-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/29729-
dc.description.abstractEdge detection is an important, but difficult, step in quantitative ultrasound (US) image analysis. In this paper, we present a new textural approach for detecting a class of edges in US images; namely, the texture edges with a weak regional mean gray-level difference (RMGD) between adjacent regions. The proposed approach comprises a vision model-based texture edge detector using Gabor functions and a new texture-enhancement scheme. The experimental results on the synthetic edge images have shown that the performances of the four tested textural and nontextural edge detectors are about 20%-95% worse than that of the proposed approach. Moreover, the texture enhancement may improve the performance of the proposed texture edge detector by as much as 40%, The experiments on 20 clinical US images have shown that the proposed approach can find reasonable edges for real objects of interest with the performance of 0.4 +/- 0.08 in terms of the Pratt's figure. (C) 2001 World Federation for Ultrasound in Medicine & Biology.en_US
dc.language.isoen_USen_US
dc.subjectultrasound imageen_US
dc.subjectedge detectionen_US
dc.subjectearly vision modelen_US
dc.subjectwavelet analysisen_US
dc.subjectdistance mapen_US
dc.subjectdifference masken_US
dc.titleA textural approach based on Gabor functions for texture edge detection in ultrasound imagesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0301-5629(00)00323-9en_US
dc.identifier.journalULTRASOUND IN MEDICINE AND BIOLOGYen_US
dc.citation.volume27en_US
dc.citation.issue4en_US
dc.citation.spage515en_US
dc.citation.epage534en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000168810300009-
dc.citation.woscount21-
Appears in Collections:Articles