完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Huang, SY | en_US |
dc.contributor.author | Lu, HHS | en_US |
dc.date.accessioned | 2014-12-08T15:44:13Z | - |
dc.date.available | 2014-12-08T15:44:13Z | - |
dc.date.issued | 2001-02-01 | en_US |
dc.identifier.issn | 0047-259X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1006/jmva.2000.1930 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/29859 | - |
dc.description.abstract | The Gauss-Markov theorem provides a golden standard for constructing the best linear unbiased estimation for linear models. The main purpose of this article is to extend the Gauss-Markov theorem to include nonparametric mixed-effects models. The extended Gauss-Markov estimation (or prediction) is shown to be equivalent to a regularization method and its minimaxity is addressed. The resulting Gauss-Markov estimation serves as an oracle to guide the exploration for effective nonlinear estimators adaptively. Various examples are discussed. Particularly, the wavelet nonparametric regression example and its connection with a Sobolev regularization is presented. (C) 2001 Academic Press. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | nonparametric mixed-effects | en_US |
dc.subject | Gauss-Markov theorem | en_US |
dc.subject | best linear unbiased prediction (BLUP) | en_US |
dc.subject | regularization | en_US |
dc.subject | minimaxity | en_US |
dc.subject | normal equations | en_US |
dc.subject | nonparametric regression | en_US |
dc.subject | wavelet shrinkage | en_US |
dc.subject | deconvolution | en_US |
dc.title | Extended Gauss-Markov theorem for nonparametric mixed-effects models | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1006/jmva.2000.1930 | en_US |
dc.identifier.journal | JOURNAL OF MULTIVARIATE ANALYSIS | en_US |
dc.citation.volume | 76 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 249 | en_US |
dc.citation.epage | 266 | en_US |
dc.contributor.department | 交大名義發表 | zh_TW |
dc.contributor.department | National Chiao Tung University | en_US |
dc.identifier.wosnumber | WOS:000167083100005 | - |
dc.citation.woscount | 2 | - |
顯示於類別: | 期刊論文 |