完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, SYen_US
dc.contributor.authorLu, HHSen_US
dc.date.accessioned2014-12-08T15:44:13Z-
dc.date.available2014-12-08T15:44:13Z-
dc.date.issued2001-02-01en_US
dc.identifier.issn0047-259Xen_US
dc.identifier.urihttp://dx.doi.org/10.1006/jmva.2000.1930en_US
dc.identifier.urihttp://hdl.handle.net/11536/29859-
dc.description.abstractThe Gauss-Markov theorem provides a golden standard for constructing the best linear unbiased estimation for linear models. The main purpose of this article is to extend the Gauss-Markov theorem to include nonparametric mixed-effects models. The extended Gauss-Markov estimation (or prediction) is shown to be equivalent to a regularization method and its minimaxity is addressed. The resulting Gauss-Markov estimation serves as an oracle to guide the exploration for effective nonlinear estimators adaptively. Various examples are discussed. Particularly, the wavelet nonparametric regression example and its connection with a Sobolev regularization is presented. (C) 2001 Academic Press.en_US
dc.language.isoen_USen_US
dc.subjectnonparametric mixed-effectsen_US
dc.subjectGauss-Markov theoremen_US
dc.subjectbest linear unbiased prediction (BLUP)en_US
dc.subjectregularizationen_US
dc.subjectminimaxityen_US
dc.subjectnormal equationsen_US
dc.subjectnonparametric regressionen_US
dc.subjectwavelet shrinkageen_US
dc.subjectdeconvolutionen_US
dc.titleExtended Gauss-Markov theorem for nonparametric mixed-effects modelsen_US
dc.typeArticleen_US
dc.identifier.doi10.1006/jmva.2000.1930en_US
dc.identifier.journalJOURNAL OF MULTIVARIATE ANALYSISen_US
dc.citation.volume76en_US
dc.citation.issue2en_US
dc.citation.spage249en_US
dc.citation.epage266en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000167083100005-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000167083100005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。