完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, PNen_US
dc.contributor.authorHan, YSSen_US
dc.date.accessioned2014-12-08T15:44:23Z-
dc.date.available2014-12-08T15:44:23Z-
dc.date.issued2001en_US
dc.identifier.issn0895-4801en_US
dc.identifier.urihttp://hdl.handle.net/11536/29979-
dc.identifier.urihttp://dx.doi.org/10.1137/S0895480100379993en_US
dc.description.abstractIn this paper, we restudy the covering radius of block codes from an information theoretic point of view by ignoring the combinatorial formulation of the problem. In the new setting, the formula of the statistically defined minimum covering radius, for which the probability mass of uncovered space by M spheres can be made arbitrarily small, is reduced to a minimization of a statistically defined spectrum formula among codeword-selecting distributions. The advantage of the new view is that no assumptions need to be made on the code alphabet (such as finite, countable, etc.) and the distance measure ( such as additive, symmetric, bounded, etc.) in the problem transformation, and hence the spectrum formula can be applied in most general situations. We next address a sufficient condition under which uniform codeword-selecting distribution minimizes the spectrum formula. With the condition, the asymptotic minimum covering radius for block codes under J-ary quantized channels and constant weight codes under Hamming distance measure are determined to display the usage of the spectrum formula.en_US
dc.language.isoen_USen_US
dc.subjectcovering radiusen_US
dc.subjectblock codesen_US
dc.subjectinformation spectrumen_US
dc.titleAsymptotic minimum covering radius of block codesen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/S0895480100379993en_US
dc.identifier.journalSIAM JOURNAL ON DISCRETE MATHEMATICSen_US
dc.citation.volume14en_US
dc.citation.issue4en_US
dc.citation.spage549en_US
dc.citation.epage564en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000172047400010-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000172047400010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。