Full metadata record
DC FieldValueLanguage
dc.contributor.authorHwang, FKen_US
dc.contributor.authorLiu, YCen_US
dc.date.accessioned2014-12-08T15:44:29Z-
dc.date.available2014-12-08T15:44:29Z-
dc.date.issued2001en_US
dc.identifier.issn0269-9648en_US
dc.identifier.urihttp://hdl.handle.net/11536/30038-
dc.identifier.urihttp://dx.doi.org/10.1017/S0269964801151041en_US
dc.description.abstractA pool design is random if it varies according to a probability distribution. There are four types of random design proposed in the literature: random incidence design, random k-set design, random distinct k-set design, and random k-size design. Recently Hwang gave an approximation to estimate the number of unresolved positives for random distinct k-set design. In this article, we give exact formulas for all four types of random designs for estimating the number of unresolved positives. We also do some numerical comparisons of the four designs.en_US
dc.language.isoen_USen_US
dc.titleThe expected numbers of unresolved positive clones for various random pool designsen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/S0269964801151041en_US
dc.identifier.journalPROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCESen_US
dc.citation.volume15en_US
dc.citation.issue1en_US
dc.citation.spage57en_US
dc.citation.epage68en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000168342200004-
dc.citation.woscount3-
Appears in Collections:Articles