Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, WHen_US
dc.contributor.authorChang, WWen_US
dc.date.accessioned2014-12-08T15:44:35Z-
dc.date.available2014-12-08T15:44:35Z-
dc.date.issued2000-12-01en_US
dc.identifier.issn0916-8532en_US
dc.identifier.urihttp://hdl.handle.net/11536/30103-
dc.description.abstractA minimum classification error formulation based on genetic algorithm is proposed for discriminative training of the bigram language model. Results of Chinese dialect identification were reported which demonstrate performance improvement with use of the genetic algorithm over the generalized probabilistic descent algorithm.en_US
dc.language.isoen_USen_US
dc.subjectChinese dialect identificationen_US
dc.subjectminimum classification erroren_US
dc.subjectgeneralized probabilistic descent algorithmen_US
dc.subjectgenetic algorithmen_US
dc.titleChinese dialect identification based on genetic algorithm for discriminative training of bigram modelen_US
dc.typeLetteren_US
dc.identifier.journalIEICE TRANSACTIONS ON INFORMATION AND SYSTEMSen_US
dc.citation.volumeE83Den_US
dc.citation.issue12en_US
dc.citation.spage2183en_US
dc.citation.epage2185en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000166143700019-
dc.citation.woscount0-
Appears in Collections:Articles