完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, SYen_US
dc.contributor.authorLu, HHSen_US
dc.date.accessioned2014-12-08T15:44:46Z-
dc.date.available2014-12-08T15:44:46Z-
dc.date.issued2000-10-01en_US
dc.identifier.issn1017-0405en_US
dc.identifier.urihttp://hdl.handle.net/11536/30229-
dc.description.abstractThe main purpose of this article is to study the wavelet shrinkage method from a Bayesian viewpoint. Nonparametric mixed-effects models are proposed and used for interpretation of the Bayesian structure. Bayes and empirical Bayes estimation are discussed. The latter is shown to have the Gauss-Markov type optimality (i.e., BLUP), to be equivalent to a method of regularization estimator (MORE), and to be minimax in a certain class. Characterization of prior and posterior regularity is discussed. The smoothness of posterior estimators is controlled via prior parameters. Computational issues including the use of generalized cross validation are discussed, and examples are presented.en_US
dc.language.isoen_USen_US
dc.subjectBayesian regressionen_US
dc.subjectBesov spacesen_US
dc.subjectbest linear unbiased prediction (BLUP)en_US
dc.subjectGauss-Markov estimationen_US
dc.subjectgeneralized cross validationen_US
dc.subjectnon-parametric regressionen_US
dc.subjectSobolev regularizationen_US
dc.subjectwavelet shrinkageen_US
dc.titleBayesian wavelet shrinkage for nonparametric mixed-effects modelsen_US
dc.typeArticleen_US
dc.identifier.journalSTATISTICA SINICAen_US
dc.citation.volume10en_US
dc.citation.issue4en_US
dc.citation.spage1021en_US
dc.citation.epage1040en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000165776800001-
dc.citation.woscount12-
顯示於類別:期刊論文