Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, LAen_US
dc.contributor.authorThompson, Pen_US
dc.contributor.authorHung, HNen_US
dc.date.accessioned2014-12-08T15:44:49Z-
dc.date.available2014-12-08T15:44:49Z-
dc.date.issued2000-10-01en_US
dc.identifier.issn1017-0405en_US
dc.identifier.urihttp://hdl.handle.net/11536/30247-
dc.description.abstractA two-stage symmetric regression quantile is considered as an alternative for estimating the population quantile for the simultaneous equations model. We introduce a two-stage symmetric trimmed least squares estimator (LSE) based on this quantile. It is shown that, under mixed multivariate normal errors, this trimmed LSE has asymptotic variance much closer to the Cramer-Rao lower bound than some usual robust estimators. It can even achieve the Cramer-Rao lower bound when the contaminated variance goes to infinity. This suggests that the symmetric-type quantile function is as efficient in other statistical applications, such as outlier detection. A Monte Carlo study under asymmetric error distribution and a real data analysis are also presented.en_US
dc.language.isoen_USen_US
dc.subjectregression quantileen_US
dc.subjectsimultaneous equations modelen_US
dc.subjecttrimmed least squares estimatoren_US
dc.titleThe symmetric type two-stage trimmed least squares estimator for the simultaneous equations modelen_US
dc.typeArticleen_US
dc.identifier.journalSTATISTICA SINICAen_US
dc.citation.volume10en_US
dc.citation.issue4en_US
dc.citation.spage1243en_US
dc.citation.epage1255en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000165776800013-
dc.citation.woscount1-
Appears in Collections:Articles