完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSu, CTen_US
dc.contributor.authorChiu, CCen_US
dc.contributor.authorChang, HHen_US
dc.date.accessioned2014-12-08T15:44:50Z-
dc.date.available2014-12-08T15:44:50Z-
dc.date.issued2000-09-01en_US
dc.identifier.issn1072-4761en_US
dc.identifier.urihttp://hdl.handle.net/11536/30262-
dc.description.abstractAmong the many extensive industrial applications which parameter design optimization problems have found include product development, process design and operational condition settings. The parameter design optimization problems are complex owing to that nonlinear relationships and interactions may occur among parameters. To resolve such problems, engineers commonly employ the Taguchi method. However, the Taguchi method has some limitations in practice. Therefore, in this work, we present a novel means of improving the effectiveness of the optimization of parameter design. The proposed approach employs the neural network and generic algorithm, and consists of two phases. Phase 1 formulates a fitness function for a problem by a neural network method to predict the value of the response for a given parameter setting. Phase 2 applies a genetic algorithm to search for the optimal parameter combination. A numerical example demonstrates the effectiveness of the proposed approach. Significance: This work provides an efficient approach to optimize the parameter design problems, which is relatively simple and is fairly easy for engineers to apply to diverse industrial applications.en_US
dc.language.isoen_USen_US
dc.subjectTaguchi methoden_US
dc.subjectgenetic algorithmen_US
dc.subjectneural networken_US
dc.subjectbackpropagation networken_US
dc.subjectparameter designen_US
dc.titleParameter design optimization via neural network and genetic algorithmen_US
dc.typeArticleen_US
dc.identifier.journalINTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICEen_US
dc.citation.volume7en_US
dc.citation.issue3en_US
dc.citation.spage224en_US
dc.citation.epage231en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000087878900005-
dc.citation.woscount17-
顯示於類別:期刊論文