完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, TYen_US
dc.contributor.authorWang, JCen_US
dc.contributor.authorTzeng, GHen_US
dc.date.accessioned2014-12-08T15:44:57Z-
dc.date.available2014-12-08T15:44:57Z-
dc.date.issued2000-08-01en_US
dc.identifier.issn1083-4419en_US
dc.identifier.urihttp://dx.doi.org/10.1109/3477.865169en_US
dc.identifier.urihttp://hdl.handle.net/11536/30352-
dc.description.abstractThis study develops an identification procedure for general fuzzy measures using genetic algorithms, In view of the difficulty in data collection in practice, the amount of input data is simplified through a sampling procedure concerning attribute subsets, and the corresponding detail design is adapted to the partial information acquired by the procedure. A specially designed genetic algorithm is proposed for better identification, including the development of the initialization procedure, fitness function, and three genetic operations. To show the applicability of the proposed method, this study simulates a set of experimental data that are representative of several typical classes. The experimental analysis indicates that using genetic algorithms to determine general fuzzy measures can obtain satisfactory results under the framework of partial information.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy measureen_US
dc.subjectgenetic algorithmen_US
dc.subjectidentificationen_US
dc.subjectpartial informationen_US
dc.titleIdentification of general fuzzy measures by genetic algorithms based on partial informationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/3477.865169en_US
dc.identifier.journalIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICSen_US
dc.citation.volume30en_US
dc.citation.issue4en_US
dc.citation.spage517en_US
dc.citation.epage528en_US
dc.contributor.department管理學院zh_TW
dc.contributor.departmentCollege of Managementen_US
dc.identifier.wosnumberWOS:000089118000003-
dc.citation.woscount36-
顯示於類別:期刊論文


文件中的檔案:

  1. 000089118000003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。