完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chang, GJ | en_US |
dc.contributor.author | Chen, BL | en_US |
dc.contributor.author | Fu, HL | en_US |
dc.contributor.author | Huang, KC | en_US |
dc.date.accessioned | 2014-12-08T15:45:03Z | - |
dc.date.available | 2014-12-08T15:45:03Z | - |
dc.date.issued | 2000-07-15 | en_US |
dc.identifier.issn | 0166-218X | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/30389 | - |
dc.description.abstract | For a fixed positive integer k, the linear k-arboricity la(k)(G) of a graph G is the minimum number l such that the edge set E(G) can be partitioned into G disjoint sets and that each induces a subgraph whose components are paths of lengths at most k. This paper studies linear k-arboricity from an algorithmic point of view. In particular, we present a linear-time algorithm to determine whether a tree T has la(k)(T)less than or equal to m. (C) 2000 Elsevier Science B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | linear forest | en_US |
dc.subject | linear k-forest | en_US |
dc.subject | linear arboricity | en_US |
dc.subject | linear k-arboricity | en_US |
dc.subject | tree | en_US |
dc.subject | leaf | en_US |
dc.subject | penultimate vertex | en_US |
dc.subject | algorithm | en_US |
dc.subject | NP-complete | en_US |
dc.title | Linear k-arboricities on trees | en_US |
dc.type | Article | en_US |
dc.identifier.journal | DISCRETE APPLIED MATHEMATICS | en_US |
dc.citation.volume | 103 | en_US |
dc.citation.issue | 1-3 | en_US |
dc.citation.spage | 281 | en_US |
dc.citation.epage | 287 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000087473600018 | - |
dc.citation.woscount | 11 | - |
顯示於類別: | 期刊論文 |