完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, GJen_US
dc.contributor.authorChen, BLen_US
dc.contributor.authorFu, HLen_US
dc.contributor.authorHuang, KCen_US
dc.date.accessioned2014-12-08T15:45:03Z-
dc.date.available2014-12-08T15:45:03Z-
dc.date.issued2000-07-15en_US
dc.identifier.issn0166-218Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/30389-
dc.description.abstractFor a fixed positive integer k, the linear k-arboricity la(k)(G) of a graph G is the minimum number l such that the edge set E(G) can be partitioned into G disjoint sets and that each induces a subgraph whose components are paths of lengths at most k. This paper studies linear k-arboricity from an algorithmic point of view. In particular, we present a linear-time algorithm to determine whether a tree T has la(k)(T)less than or equal to m. (C) 2000 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectlinear foresten_US
dc.subjectlinear k-foresten_US
dc.subjectlinear arboricityen_US
dc.subjectlinear k-arboricityen_US
dc.subjecttreeen_US
dc.subjectleafen_US
dc.subjectpenultimate vertexen_US
dc.subjectalgorithmen_US
dc.subjectNP-completeen_US
dc.titleLinear k-arboricities on treesen_US
dc.typeArticleen_US
dc.identifier.journalDISCRETE APPLIED MATHEMATICSen_US
dc.citation.volume103en_US
dc.citation.issue1-3en_US
dc.citation.spage281en_US
dc.citation.epage287en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000087473600018-
dc.citation.woscount11-
顯示於類別:期刊論文


文件中的檔案:

  1. 000087473600018.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。