Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, CFen_US
dc.contributor.authorLin, JYen_US
dc.contributor.authorYang, HDen_US
dc.date.accessioned2019-04-03T06:39:30Z-
dc.date.available2019-04-03T06:39:30Z-
dc.date.issued2000-06-12en_US
dc.identifier.issn0031-9007en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevLett.84.5612en_US
dc.identifier.urihttp://hdl.handle.net/11536/30463-
dc.description.abstractWe have measured low-temperature specific hear C(T, H) of La1.9Sr0.1Cu1-xZnxO4 (x = 0, 0.01, and 0.02) in both zero and applied magnetic fields. A pronounced dip of C/T below 2 K was observed in Zn-doped samples, which is absent in the nominally clean one. If the origin of the dip in CIT is electronic, the quasiparticle density of states N(E) in Zn-doped samples may be depressed below a small energy scale Eo. The present data can be well described by the model N(E) = N(0) + alpha E-1/2, with a nonzero N(0) and positive alpha. Magnetic fields depress N(0) and lead to an increase in E-0, while leaving the energy dependence of N(E) unchanged. This novel depression of N(E) below Eo in impurity-doped cuprates cannot be reconciled with the semiclassical self-consistent approximation model. Discussions in the framework based on the nonlinear sigma model field theory and other possible explanations are presented.en_US
dc.language.isoen_USen_US
dc.titleDepression of quasiparticle density of states at zero energy in La1.9Sr0.1Cu1-xZnxO4en_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevLett.84.5612en_US
dc.identifier.journalPHYSICAL REVIEW LETTERSen_US
dc.citation.volume84en_US
dc.citation.issue24en_US
dc.citation.spage5612en_US
dc.citation.epage5615en_US
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000087522200039en_US
dc.citation.woscount8en_US
Appears in Collections:Articles


Files in This Item:

  1. a97f09e001c5d84e6a388799b48fb407.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.