完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, CMen_US
dc.contributor.authorLu, HHSen_US
dc.contributor.authorLin, YCen_US
dc.date.accessioned2014-12-08T15:45:44Z-
dc.date.available2014-12-08T15:45:44Z-
dc.date.issued2000-02-01en_US
dc.identifier.issn0301-5629en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0301-5629(99)00140-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/30760-
dc.description.abstractDue to the speckles and the ill-defined edges of the object of interest, the classic image-segmentation techniques are usually ineffective in segmenting ultrasound (US) images. In this paper, we present a new algorithm for segmenting general US images that is composed of two major techniques; namely, the early-vision model and the discrete-snake model, By simulating human early vision, the early-vision model can capture both grey-scale and textural edges while the speckle noise is suppressed. By performing deformation only on the peaks of the distance map, the discrete-snake model promises better noise immunity and more accurate convergence. Moreover, the constraint for most conventional snake models that the initial contour needs to be located very close to the actual boundary has been relaxed substantially. The performance of the proposed snake model has been shown to be comparable to manual delineation and superior to that of the gradient vector flow (GVF) snake model. (C) 2000 World Federation for Ultrasound in Medicine & Biology.en_US
dc.language.isoen_USen_US
dc.subjectultrasounden_US
dc.subjectimage segmentationen_US
dc.subjectearly-vision modelen_US
dc.subjectsnakeen_US
dc.subjectdiscrete-snake modelen_US
dc.subjectspecklesen_US
dc.subjecttextureen_US
dc.titleAn early vision-based snake model for ultrasound image segmentationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0301-5629(99)00140-4en_US
dc.identifier.journalULTRASOUND IN MEDICINE AND BIOLOGYen_US
dc.citation.volume26en_US
dc.citation.issue2en_US
dc.citation.spage273en_US
dc.citation.epage285en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000085934400013-
dc.citation.woscount40-
顯示於類別:期刊論文